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LETI’ER TO THE EDITOR 

Field theoretic approaches to biconnectedness in 
percolating systems 

A B Harris?$ and T C LubenskyS 
t Schlumberger-Doll Research, PO Box 307, Ridgefield, CT 06877, USA 
t Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA 

Received 27 April 1983 

Abstract. Two field theoretic formulations for the percolation problem are presented 
from which the critical exponents describing the ‘backbone’ of the infinite cluster at the 
percolation threshold are obtained. At high spatial dimension, d, the order-parameter 
exponent for the backbone P‘*’is given by B‘*’ = 28 + $‘”v, where is the critical exponent 
for the density of the infinite cluster and is a new crossover exponent. In mean-field 
theory $‘”= 0 and for d = 6 - & ,  $ ‘ 2 ’ =  2 ~ * / 4 9 + O ( & ~ ) .  Presumably, $I2’(d) is a smooth 
function of d for d > d * ,  where numerical and theoretical work indicates that d* is about 
3. Our result indicates that the fractal dimensionality of the backbone is given in terms 
of the percolation exponents as y / v  -9‘”. 

In a lattice in which bonds are randomly removed with probability 1 - p ,  an infinite 
cluster of sites connected by occupied bonds exists for p greater than a critical value, 
p c ,  and the system is said to percolate. (For reviews of percolation, see Stauffer (1979) 
and Essam (1980)). The situation for p > p c  may be described in terms of the degree 
of connectedness as follows. For p C 1 there exists a fraction of sites which are in finite 
clusters. We call these sites ‘O-connected’, in that they have 0 paths (over occupied 
bonds) to distant regions of the lattice. When all these O-connected sites are removed, 
we are left only with sites in the infinite cluster, and these we will classify as ‘m- 
connected,’ with m = 1, 2, 3. . . . The probability P ( p )  that a site is part of the infinite 
cluster grows continuously from zero as (p -pC)’, where p is a critical exponent. If 
the occupied bonds are resistors and a potential difference is established between two 
ends of the sample for p > p c ,  only a fraction of the bonds will conduct electricity. 
Those sites through which no current flows have the property that from them the 
maximum number of simultaneously independent paths to infinitely remote regions 
is 1. Here independent paths are those which have no bonds in common. These 
singly connected non-conducting sites are called ‘1 -connected.’ When these 1 - 
connected sites are removed, the sites that remain comprise the ‘backbone’ of the 
infinite cluster (Kirkpatrick 1978). The backbone appears in the heuristic theories of 
percolation advanced by Skal and Shklovskii (1974) and de Gennes (1976) in which 
the infinite cluster is viewed as nodes connected by tortuous strands of occupied 
bonds to infinitely distant regions of the lattice. Hence the backbone is the ‘biconnec- 
ted’ (Kirkpatrick 1978) part of the infinite cluster, and in our terminology these sites 
are m-connected, with m 2 2. In fact, in the ‘node-link’ picture, the nodes are by 
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implication those sites from which there emanate at least three independent paths to 
distant regions, and those we would call 3-connected. More recently, the 'node-link' 
picture has been elaborated by Coniglio (1982) to include consideration of the internal 
structure of nodes and strands which must occur at low dimensionality (Stanley 1977, 
Dasgupta et a1 1978, Gefen et a1 1981). 

We now introduce probability densities, Pcm), that a site is at feast m-connected. 
Thus for p just larger than p c ,  

P ' O )  -constant P(', = P ( p )  - ( p  - p c ) 5 0  ( la ,  6 )  

The probability P"'(p) that a site is a part of the backbone also increases continuously 
from zero for p > p c  according to (Kirkpatrick 1978) 

P'2'(p) - ( p  -pc)5'2' (IC) 

and we shall also write for m > 1 

P " ' ( p ) - ( p  -p35 '" ' .  ( 1 4  

Though there have been some numerical simulations (Kirkpatrick 1978, Li and Strieder 
1982) of P"'(p) and also a real space renormalisation-group treatment (Shlifer et a1 
1979) of P"'(p), there are as yet no concrete theoretical predictions regarding p"'. 
In particular, it has not been established whether p"' is a new totally independent 
percolation exponent, or whether it is simply related to the traditional percolation 
exponents. In this paper we will show that the higher-order connectedness exponents 
pcm)  for m > 1 can be expressed in terms of new crossover exponents which are 
independent of the usual percolation exponents. 

Associated with any order parameter M, one can define a two-point correlation 
function which tends to M 2  at infinite spatial separation. The correlation function 
associated with P ( p )  is 

G " ' ( x ,  x ' ) = [ v " ' ( x ,  x')],,, ( 2 )  
where [ 1, denotes an average over all configurations of occupied bonds and v( l ) (x ,  x')  
is unity if x and x '  are connected by a path of occupied bonds and zero otherwise. 
Near pc ,  G " ' ( x ,  x') scales with x as 

G")(x, 0) = Y - '" ' f (x / [ ) ,  (3) 
where [ - Ip -pel-" and 2w = d - 2 + 77, where d is the spatial dimensionality. From 
this we conclude in the usual way that p = wv and that 

(4) x =E G(x, O ) - b  -Pcl-y9 

G ( 2 ) ( ~ , ~ ' ) = [ v ( 2 ) ( ~ ,  x ' ) ] ,  ( 5 )  

X 

where y = dv - 2p. Likewise, the correlation function associated with P'"(p) is 

where v"'(x, x ' )  is unity if the sites x and x '  are connected by two independent paths 
of occupied bonds and zero otherwise. Near p c ,  we expect G"' to obey a scaling law 
similar to (3) : 

(6) G'*'(x, x')  = x -2"'"'r"2'(x/[) 

From this, we conclude that p"' = w(')v and that the susceptibility exponent satisfies 
y"' = dv - 28"'. More generally, one can define an m-connectedness function 
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~ " ' ( x ,  x ' )  which is non-zero only if there are m independent paths connecting x and 
x ' .  The associated correlation function, G('")(x, x ' )  scales like x - " O ' " ' ~ " ~ ( x / ~ ) ,  where 
U ( " )  = p('")/v ,  where p('") is the exponent associated with the probability that a site 
is in an infinite m-connected cluster. 

We will present here two different field theoretic methods for calculating G'". 
One method is quite general, but algebraically complex. The other is algebraically 
simpler, but is not easily extended into the ordered phase. Both methods predict 

(7) ' -29"' G('")(x, x') = [G"'(x, x')]'"Ix - X  I 
for p = p E .  Within an E expansion (E = 6 - 4  we find 

4(m) = m (m - 1 ) ~  '/49 + O(E '). (8) 

For m = 2, equation (7) implies that 

U ( 2 )  = 2" + 4(2) p'2' = 2p +upv y'2' = 2 y  - dv - 24'2'v. (9a, 6 ,  c)  

The algebraically simpler method of calculation is a modification of a field theory 
describing the statistics of branched polymers and gelation (Lubensky and Isaacson 
1978). In this theory, there are fields 4 j ( x )  carrying 'colours' j = 1, 2, . . . , s, sources 
wi, f- functional branching potentials, and repulsive potentials U. The Hamiltonian is 

where for simplicity we consider only 3-functional branching. Each Feynman graph 
in the expansion of the partition function 2 =Tr  e-H represents a configuration of 
polymer(s). The number of colours, s, is the polymer fugacity, and w3,  w1 and r are 
related respectively to the fugacities for 3-functional units, free ends, and bifunctional 
monomers. Because of the source term proportional to w l ,  (4 j )  = Q is always non-zero 
and the propagator Gij(x,x')=($i(~)4j(~')) can be expressed as a sum of two terms 

Gij(x, x')  = G ~ ( X ,  x')& + R(x ,  x') = Gll(x, x') + (Sij - l/s)G,(x, x') U l a ,  b )  

where Sij is the Kronecker delta. In ( l l a )  the first term, GI, represents propagation 
between endpoints on a single polymer, whereas the second, R, represents propagation 
between endpoints of different polymers. Representative diagrams for G, and R are 
shown in figure 1. One sees that R is non-zero only if U is non-zero. In mean-field 

X '  

X X X' 

Figure 1. Mean-field (loopless) diagrams for the propagators G, ( a )  and R ( b ) .  The lines 
represent propagation along a linear polymer segment (i.e. ( r + q * ) - ' ) ,  the broken line a 
repulsive interaction ( U ) ,  and the branch points the 3-functional fugacity, wj. 
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theory we have 

G,(q)-' = ( r  - WQ +4usQ2) +q2 Gi ' (q)  = G;' (4 )  +8usQ2 W a ,  6) 

(12c)  

At the gelation threshold, G,(q = 0) diverges, whereas Gll(q = 0) does not. Thus the 
dominant singularities associated with gelation can be obtained by replacing R (9) by 
-s-'G,(q). On the other hand, in the dilute limit (s + 0), R (4 )  = -8G: (q)uQ'.  In 
calculating G,(q), we must remain on a single polymer and there must be a continuous 
G, line running from end to end. The two one-loop diagrams contributing to G,(q) 
are shown in figure 2. The first represents a physical loop in the polymer whereas 
the second has a diagrammatic loop involving the potential U (via R )  which is not a 
physical loop of the polymer. Near percolation, figures 2 ( a )  and (6) contribute 
(1  -2s-') 5, G:(4) to G,(O), whereas in the dilute limit figure 2 ( b )  dominates, con- 
tributing 16uQ2 s, G: ( 4 ) .  These rules can readily be used to calculate critical 
exponents for percolation (Harris et a1 1975) and animals (Lubensky and Isaacson 
1978) in an E expansion. 

R (4 ) = s -'(Ge(q 1 - GI (4 1). 

in1 ( 6 )  

Figure 2. One loop diagrams contributing to G,. The double line represents the mean-field 
G, obtained by summing diagrams such as that of figure l(a), whereas the wiggly line 
represents the mean-field R.  Note that there is a continuous double line running from x 
to x '  in both diagrams. ( a )  Represents a physical loop in the polymer, whereas ( 6 )  
represents only a potential loop involving U. Near percolation, ( a )  carries a weight unity, 
whereas ( 6 )  carries a weight -2/s. 

To calculate G"'(x, x ' ) ,  we need two independent paths on the same polymer 
between x and x ' .  Representative diagrams contributing to G'2' are shown in figure 
3.  Figure 3(a\ leads to the mean-field result, G"'(x, x ' )  = [G'(x, x ' ) ] ' ,  which gives 
the dominant behaviour for d > 6 .  To order E (i.e. to order w : )  we see that in the 
Feynman diagrams of figure 3(b)  and (c) ,  the cross-link which describes propagation 
between different independent paths always involves the combination G, + R, which 
near gelation is ( l -s- ' )G, plus the non-singular term s-'Gil. In the limit s + l ,  
corresponding to percolation with an unrestricted number of clusters, the singular 
term in G, +R vanishes and we conclude that diagrams 3(6)  and (c) do not contribute 
to the dominant behaviour for G'2'. To order E' we consider the diagrams having 
the topology of figure 3(d)  involving either G, or R. Simply to associate a factor 
G,+R with each cross link would be incorrect, as it would overcount the diagram 
made with all G,'s. A correct way to count the diagrams is to group them as in figures 
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Figure 3. Diagrams contributing to G'"(x, x ' ) .  Figure (a) is the lowest order contribution 
[G(x,x')]'. The broken lines in ( b ) - ( d )  represent the combination G,+R, the most 
singular part of which vanishes for s = 1. Thus these diagrams do not contribute to Y ' ~ ' .  
(e) and (f) carry respective weights -2/s and l /s  near threshold for a total weight from 
this topology of -1 at s = 1. Since all these diagrams have three loops, they all carry an 
additional factor due to symmetry. 

3(d), (e), and cf). Thereby we obtain the result 

G'2'(x, x ' )  = iG"'(x, x ' ) ~  -$I'(x, x ' ) ,  (13) 

where r is the appropriate integral over eight propagators. A detailed calculation, 
like that given by Ma (1976) for the specific heat of the 44 model, shows that the 
most singular part of the Fourier transformed function r(q) is given by r(q = 0) - 
$w:K:r(ln r)* where Kd is the usual phase-space factor in d dimensions and w 3  assumes 
its fixed point value, w :  = 2e/(7Kd), where E = 6 - d  << 1. Then the Fourier transformed 
version of (13) is evaluated as 

G'2'(q =0)-&6rlnr[l-$(E -3q)vy-' lnr+zw3K6 1 4 2  lnr]+A, (14a) 

where A, here, and B and C, below, are unimportant constants. By comparing this 
result with the expected form, 

~ ' ~ ' ( q  = 0) - B + c In r[l  -$(I + ~ ' ~ ' y - ' )  In r ] ,  (14b) 

we obtain (9c). Fourth and higher-order potentials are irrelevant. It is expected that 
these potentials remain irrelevant for d > d * ,  where (Fucito and Parisi 1981) d* is 
somewhat less than 3. A similar analysis shows that there will be singular corrections 
to figure 3(a) below d = 8 for the dilute limit, s + 0, which describes lattice animals 
(Lubensky and Isaacson 1979). 

The second field theory for deriving (7) is based on the observation that for any 
thermal Hamiltonian, H, connecting spins s ( x )  (e.g. Ising spins) via exchanges over 
occupied bonds, the correlation function ( s ( x ) s ( x ' ) )  is non-zero if and only if x and 
x '  are in the same cluster. Thus for a given configuration of occupied bonds we have 
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Taking the average over configurations we obtain 

G"' (x ,  x ' )  = lim [ ( S ( X ) S ( X ~ ) ) ~ ] ~  =lim ( s " l ( x )  . . . s a k ( x ) s " l ( x f )  . . . s " k ( x ' ) )  ( 1 6 ~ ~  6 )  
k +Cl k - O  

where (Y is a replica index defined in the usual way, and the average in (16b) indicated 
by ( ) is taken with respect to the averaged replicated Hamiltonian e-H = [n, e-"-],, 
and the limit n + 0 is taken. The Stephen and Grest (1977) treatment of the diluted 
Ising model can be extended to calculate G " ' ( x ,  x ' )  as defined above and therefrom 
the properties of percolation. 

To calculate G ' 2 ' ( x ,  x ' ) ,  we need to add an additional index to distinguish different 
paths between x and x '  and construct a Hamiltonian such that different paths do not 
have any occupied bonds in common. A suitable such Hamiltonian is defined by 

Here a is a replica index, p a new 'colour' index, u",x)  = *1 is an Ising variable, NN 
indicates that the product is over pairs of nearest neighbouring sites, A is a coupling 
constant, and c is the number of colours. When the partition function Z =Tr e-" is 
expanded in powers of p and (1 - p ) ,  each term may be identified with a particular 
configuration, since each unoccupied bond has weight (1 - p )  and each occupied bond 
a weight p .  In addition, each occupied bond has a factor A where m is the number 
of replicas appearing on that bond. Note that for each replica, a bond can have only 
one colour at a time. Thus it is straightforward to verify that 

>H 

u ~ , ( x ) u ~ , ( x ) u ~ , ( x ' ) a I , ( x ' )  , >, 
where pj and vi must be different and ( )H denotes an average with respect to e-" 
given in (17). A check on this calculation is that when the k + 0 analytic continuations 
indicated in (18) are taken, the results no longer depend on A or c, constants which 
have nothing to do with percolation. 

A mean-field theory and an E expansion for these and higher connectedness 
functions can be developed from (17). Though algebraically somewhat tedious, this 
approach does allow a direct calculation of the order parameter 

p'2'=lim n u ~ ~ ( x ) c r l , ( x ) )  
k - 0  ( k  j = l  H 

and we outline the method briefly. The field theory is written in terms of tensor fields 
Q1 with k upper and k lower indices which are conjugate to the operator llIik_l u L i ( x )  
and similar variables Q2 with 2k upper and lower indices for the variables in (186). 
For simplicity, we give here a schematic description of the theory, although detailed 
calculations require explicit consideration of the tensor indices. The Landau- 
Ginsburg-Wilson Hamiltonian is of the form 

ddx ( ; r l Q l ( x  )' + IC 1 (VQ1 ( x  ) I 2  + i o  101 ( x  )3 

+ ~ ~ ~ Q ~ ( X ) ~ + ~ C ~ ) V Q ~ ( X ) ) ~  + ~ Q Z ( X ) Q I ( X ) ~ )  
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where r l - ( p c - p )  and r 2 -  1. The momentum shell recursion relations (for c, = 1) 
for Q1 are the same as for the s + l  field theory for the Potts model (Priest and 
Lubensky 1976): 

(20a, 6)  r'l =bZ-n1(r l - r1u:~6~n 6 )  c ;  = 6-n1( l  -tu:K6 In 6 )  

(u1-2u:K6ln6). (2OC 1 = b ( ~ - 3 T l ) / 2  

(In writing these relations we have only kept the terms needed here.) As expected, 
these recursion relations do not involve r2, cz  or 02, which are determined by 

r ;  =62-'2(r2+T1U:K6h 6)  C; = b - n z ( 1 + t ~ ; ~ 6 1 n 6 )  (204  e 1 
U ~ ( I - ~ K & :  In 6 + o ( E ~ ) )  (20f) = b(E.-2n1-77)2)/2 

where q, is the scale factor associated with Q,. We look for a fixed point with c ;  = 1 
and r ;  + 00. The condition that u2 have a fixed point value yields 

q 2 = &  - 2 q 1 - 2 p .  (21) 
Setting ufK6 = 2 ~ / 7  we obtain 4'2' as given in (8). This result implies that G'2'(k) is 
of the form 

G"'(k) - ( r 2 ) - l  +k2-'z(r2)-2.  . , . (22) 

The singular part of G"'(k = 0) is given by 

from which one easily recovers the results of equation (8). 
We briefly discuss the applicability of the 'node-link' picture (Skal and Shklovskii 

1974, de Gennes 1976). In this picture, as applied to the dilute resistor network, the 
network is viewed as 'nodes' (triconnected points) separated by distances of order 5, 
the percolation correlation length. The nodes are supposed to be connected by tortuous 
strands whose length, or more properly, whose resistance, L, diverges at the percolation 
threshold as L - ( p  -p,)-'. According to this picture the conductivity is given by 

p = ( d - 2 ) v + &  (24) 
This exponent can be calculated from a field theory without recourse to any specific 
geometrical assumptions (Dasgupta et a1 1978, Stephen 1978), and in fact Wallace 
and Young (1978) have shown that t is unity to all order in perturbation theory, 
which is presumed to be valid within the E = 6-d  expansion. Indeed, (24) seems to 
be valid with 5 = 1 for d greater than about 3. For d = 2, C is definitely greater than 
unity (p = 1.27*0.04 according to Li and Strieder (1982)). The situation for d = 3 
is unclear. The numerical situation will be reviewed in detail elsewhere (Harris 1983). 

Now we discuss the implication of this work for the node-link picture. If one 
really believes that the strands connecting nodes are structureless, then one might 
propose the relation 

P ( 2 )  - L ' / t d ,  (25) 
where L' is the path length between nodes. Since this quantity is not necessarily the 
same as the resistance between nodes (Dasgupta et a1 1978), its divergence at p c  may 
be governed by a different critical exponent: 

L ' -  ( p  - p c ) - c ' ,  (26) 
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from which there follows 

p‘2’  = dv - l’. (27) 

Alternatively, one might attempt to calculate P c 2 )  via 

9 (28) p(2) - ~ 1 p ( 3 )  

since P‘3) is the density of nodes (triconnected vertices). Equation (28) leads to the 
relation 

p i 2 ) = @ ( 3 ) - ( ’ *  (29) 

Although (26)-(29) do work in mean-field theory, they fail even to first order in E 

where p(’ )  = pp. Comparing (27) and (29) we would have /3‘3’ = dv, a relation which 
fails in first order in E .  If one assumes that 5’ is the same as the conductivity crossover 
exponent, 5, then one can verify that neither (27) nor (29) is valid to first order in E .  

Recently Alexander and Orbach (1982) have proposed a relation between various 
fractal dimensionalities which yields 

t - (d - 2 ) ~  = ( = (p + 7)/2, (30) 

in contradiction to the result (=  1 of Wallace and Young (1978). Identifying this 
value with l’ in (27) also leads to a relation for p‘2’ which fails to first order in E .  All 
these relations fail badly in low dimension. From this we conclude that the ‘node-link’ 
picture should not be taken too literally. 

Now we discuss briefly the numerical situation. We summarise existing data on 
p‘*’ in table 1. Since pf2’= 2p for a Cayley tree (Gefen et a1 1981, Harris 1983), (9) 
must be true within mean-field theory. We have listed this result for d = 6, since this 
is the upper critical dimension for percolation (Toulouse 1974, Harris er a1 1975). In 
view of the smallness of IClim), we ta6ulate /3‘2’/2@, which our results give as 1 +  
(L‘2’v/(2/3) - 1 + (6 -d)2/98. The numerical results are consistent with this result, but 
comparison for E > 2  is not very meaningful. It is interesting to observe that the 
plausible guess (Kirkpatrick 1978), /3‘*’/2p = 1, is well satisfied in three or more 
dimensions. This simple guess fails badly in two dimensions. As we have said, our 
derivation breaks down when the fourth-order potential becomes relevant, presumably 
at d * = 3 (Fucito and Parisi 1981). The fourth-order potential becoming relevant may 
also be responsible for the anomalous behaviour of the conductivity scaling law of (24). 

Table 1. Numerical values of exponents. 

d P’ B P‘*” ) 

3 0.9* O . l b  0.41 f 0.02e 1.1*0.2 

6 2‘ l 8  1 

2 0.38*0.02” 0.14d 1.35 f O . l  

4 l.1*O.lb 0.52*0.03‘ 1.05 f 0.15 

a Li and Strieder (1982). e Sur et a1 (1977) 

‘Fisher and Essam (1961). 
Kirkpatrick (1978). Kirkpatrick (1976). 
Gefen eta1 (1981) and Harris (1983). 
Nienhuis ef a1 (1980) and Pearson (1980) give p = &, 
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Finally, we note that since the fractal dimensionality, dim' of the m-connected 

dim) = d -@("')/v, (31) 

backbone is given by (Kirkpatrick 1978) 

our results indicate that 
d!2' = y / v  - 4'2'. 
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